On boundedly generated subgroups of profinite groups
نویسندگان
چکیده
منابع مشابه
Counting the Closed Subgroups of Profinite Groups
The sets of closed and closed-normal subgroups of a profinite group carry a natural profinite topology. Through a combination of algebraic and topological methods the size of these subgroup spaces is calculated, and the spaces partially classified up to homeomorphism.
متن کاملClassifying Spaces of Subgroups of Profinite Groups
The set of all closed subgroups of a profinite carries a natural profinite topology. This space of subgroups can be classified up to homeomorphism in many cases, and tight bounds placed on its complexity as expressed by its scattered height.
متن کاملSubgroups of Finite Index in Profinite Groups
One way to view Theorem 1.1 is as a statement that the algebraic structure of a finitely generated profinite group somehow also encodes the topological structure. That is, if one wishes to know the open subgroups of a profinite group G, a topological property, one must only consider the subgroups of G of finite index, an algebraic property. As profinite groups are compact topological spaces, an...
متن کاملMaximal abelian subgroups of free profinite groups
THEOREM. Let F be the free profinite group on a set X, where \X\ > 2, and let n be a non-empty set of primes. Then F has a maximal abelian subgroup isomorphic to HpEn Zp. The idea of the proof is the following: we show that A — Ylpe7I1p is a free factor of Pa, i.e. fia ^ A *B for some profinite group B. To conclude from this that A is a maximal abelian subgroup of Fa (the general case then foll...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2014
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2014.02.019